Chapter 12—Transition to Multiengine Airplanes |
||
---|---|---|
Table of Contents Multiengine Flight General Terms and Definitions Operation of Systems Propellers Propeller Synchronization Fuel Crossfeed Combustion Heater Flight Director / Autopilot Yaw Damper Alternator / Generator Nose Baggage Compartment Anti-Icing / Deicing Performance and Limitations Weight and Balance Ground Operation Normal and Crosswind Takeoff and Climb Level Off and Cruise Normal Approach and Landing Crosswind Approach and Landing Short-Field Takeoff and Climb Short-Field Approach and Landing Go-Around Rejected Takeoff Engine Failure After Lift-Off Engine Failure During Flight Engine Inoperative Approach Landing Engine Inoperative Flight Principles Slow Flight Stalls Power-Off Stalls (Approach and Landing) Power-On Stalls (Takeoff and Departure) Spin Awareness Engine Inoperative—Loss of Directional Control Demonstration Multiengine Training Considerations |
STALLSStall characteristics vary among multiengine airplanes just as they do with single-engine airplanes, and therefore, it is important to be familiar with them. The application of power upon stall recovery, however, has a significantly greater effect during stalls in a twin than a single-engine airplane. In the twin, an application of power blows large masses of air from the propellers directly over the wings, producing a significant amount of lift in addition to the expected thrust. The multiengine airplane, particularly at light operating weights, typically has a higher thrust-toweight ratio, making it quicker to accelerate out of a stalled condition. Ch 12.qxd 5/7/04 9:55 AM Page 12-26 In general, stall recognition and recovery training in twins is performed similar to any high performance single-engine airplane. However, for twins, all stall maneuvers should be planned so as to be completed at least 3,000 feet AGL. Single-engine stalls or stalls with significantly more power on one engine than the other should not be attempted due to the likelihood of a departure from controlled flight and possible spin entry. Similarly, simulated engine failures should not be performed during stall entry and recovery. |
|
PED Publication |