Chapter 12—Transition to Multiengine Airplanes

Table of Contents
Multiengine Flight
General
Terms and Definitions
Operation of Systems
    Propellers
    Propeller Synchronization
    Fuel Crossfeed
    Combustion Heater
    Flight Director / Autopilot
    Yaw Damper
    Alternator / Generator
    Nose Baggage Compartment
    Anti-Icing / Deicing
Performance and Limitations
Weight and Balance
Ground Operation
Normal and Crosswind Takeoff and Climb
Level Off and Cruise
Normal Approach and Landing
Crosswind Approach and Landing
Short-Field Takeoff and Climb
Short-Field Approach and Landing
Go-Around
Rejected Takeoff
Engine Failure After Lift-Off
Engine Failure During Flight
Engine Inoperative Approach Landing
Engine Inoperative Flight Principles
Slow Flight
Stalls
    Power-Off Stalls (Approach and Landing)

    Power-On Stalls (Takeoff and Departure)
    Spin Awareness
Engine Inoperative—Loss of Directional Control Demonstration
Multiengine Training Considerations




SHORT-FIELD TAKEOFF AND CLIMB

The short-field takeoff and climb differs from the normal takeoff and climb in the airspeeds and initial climb profile. Some AFM/POHs give separate short-field takeoff procedures and performance charts that recommend specific flap settings and airspeeds. Other AFM/POHs do not provide separate short-field procedures. In the absence of such specific procedures, the airplane should be operated only as recommended in the AFM/POH. No operations should be conducted contrary to the recommendations in the AFM/POH.

On short-field takeoffs in general, just after rotation and lift-off, the airplane should be allowed to accelerate to VX, making the initial climb over obstacles at VX and transitioning to VY as obstacles are cleared. [Figure 12-9]

Figure 12-9. Short-field takeoff and climb.

Figure 12-9. Short-field takeoff and climb.

12-16

Ch 12.qxd 5/7/04 9:54 AM Page 12-17

When partial flaps are recommended for short-field takeoffs, many light-twins have a strong tendency to become airborne prior to VMC plus 5 knots. Attempting to prevent premature lift-off with forward elevator pressure results in wheelbarrowing. To prevent this, allow the airplane to become airborne, but only a few inches above the runway. The pilot should be prepared to promptly abort the takeoff and land in the event of engine failure on takeoff with landing gear and flaps extended at airspeeds below VX.

Engine failure on takeoff, particularly with obstructions, is compounded by the low airspeeds and steep climb attitudes utilized in short-field takeoffs. VX and VXSE are often perilously close to VMC, leaving scant margin for error in the event of engine failure as VXSE is assumed. If flaps were used for takeoff, the engine failure situation becomes even more critical due to the additional drag incurred. If VX is less than 5 knots higher than VMC, give strong consideration to reducing useful load or using another runway in order to increase the takeoff margins so that a short-field technique will not be required.




Previous | Next


Copyright 2012
PED Publication