Chapter 12—Transition to Multiengine Airplanes

Table of Contents
Multiengine Flight
General
Terms and Definitions
Operation of Systems
    Propellers
    Propeller Synchronization
    Fuel Crossfeed
    Combustion Heater
    Flight Director / Autopilot
    Yaw Damper
    Alternator / Generator
    Nose Baggage Compartment
    Anti-Icing / Deicing
Performance and Limitations
Weight and Balance
Ground Operation
Normal and Crosswind Takeoff and Climb
Level Off and Cruise
Normal Approach and Landing
Crosswind Approach and Landing
Short-Field Takeoff and Climb
Short-Field Approach and Landing
Go-Around
Rejected Takeoff
Engine Failure After Lift-Off
Engine Failure During Flight
Engine Inoperative Approach Landing
Engine Inoperative Flight Principles
Slow Flight
Stalls
    Power-Off Stalls (Approach and Landing)

    Power-On Stalls (Takeoff and Departure)
    Spin Awareness
Engine Inoperative—Loss of Directional Control Demonstration
Multiengine Training Considerations




SLOW FLIGHT

There is nothing unusual about maneuvering during slow flight in a multiengine airplane. Slow flight may be conducted in straight-and-level flight, turns, in the clean configuration, landing configuration, or at any other combination of landing gear and flaps. Pilots should closely monitor cylinder head and oil temperatures during slow flight. Some high performance multiengine airplanes tend to heat up fairly quickly under some conditions of slow flight, particularly in the landing configuration.

Simulated engine failures should not be conducted during slow flight. The airplane will be well below VSSE and very close to VMC. Stability, stall warning or stall avoidance devices should not be disabled while maneuvering during slow flight.




Previous | Next


Copyright 2012
PED Publication