Chapter 15-Transition to Jet Powered Airplanes |
||
---|---|---|
Table of Contents General Jet Engine Basics Operating the Jet Engine Jet Engine Ignition Continuous Ignition Fuel Heaters Setting Power Thrust to Thrust Lever Relationship Variation of Thrust with RPM Slow Acceleration of the Jet Engine Jet Engine Efficiency Absence of Propeller Effect Absence of Propeller Slipstream Absence of Propeller Drag Speed Margins Recovery from Overspeed Conditions Mach Buffet Boundaries Low Speed Flight Stalls Drag Devices Thrust Reversers Pilot Sensations in Jet Flying Jet Airplane Takeoff and Climb V-Speeds Pre-Takeoff Procedures Takeoff Roll Rotation and Lift-Off Initial Climb Jet Airplane Approach and Landing Landing Requirements Landing Speeds Significant Differences The Stabilized Approach Approach Speed Glidepath Control The Flare Touchdown and Rollout |
INITIAL CLIMBOnce the proper pitch attitude is attained, it must be maintained. The initial climb after lift-off is done at this constant pitch attitude. Takeoff power is maintained and the airspeed allowed to accelerate. Landing gear retraction should be accomplished after a positive rate of climb has been established and confirmed. Remember that in some airplanes gear retraction may temporarily increase the airplane drag while landing gear doors open. Premature gear retraction may cause the airplane to settle back towards the runway surface. Remember also that because of ground effect, the vertical speed indicator and the altimeter may not show a positive climb until the airplane is 35 to 50 feet above the runway. The climb pitch attitude should continue to be held and the airplane allowed to accelerate to flap retraction speed. However, the flaps should not be retracted until obstruction clearance altitude or 400 feet AGL has been passed. Ground effect and landing gear drag reduction results in rapid acceleration during this phase of the takeoff and climb. Airspeed, altitude, climb rate, attitude, and heading must be monitored carefully. When the airplane settles down to a steady climb, longitudinal stick forces can be trimmed out. If a turn must be made during this phase of flight, no more than 15 to 20 of bank should be used. Because of spiral instability, and because at this point an accurate trim state on rudder and ailerons has not yet been achieved, the bank angle should be carefully monitored throughout the turn. If a power reduction must be made, pitch attitude should be reduced simultaneously and the airplane monitored carefully so as to preclude entry into an inadvertent descent. When the airplane has attained a steady climb at the appropriate en route climb speed, it can be trimmed about all axes and the autopilot engaged. 15-18 Ch 15.qxd 5/7/04 10:22 AM Page 15-19 |
|
PED Publication |