Chapter 8—Approaches and Landings

Table of Contents
Normal Approach and Landing
    Base Leg
    Final Approach
    Use of Flaps
    Estimating Height and Movement
    Roundout (Flare)
    After-Landing Roll
    Stabilized Approach Concept

Intentional Slips
Go-Arounds (Rejected Landings)
    Ground Effect

Crosswind Approach and Landing
    Crosswind Final Approach
    Crosswind Roundout (Flare)
    Crosswind Touchdown
    Crosswind After-Landing Roll
    Maximum Safe Crosswind Velocities

Turbulent Air Approach and Landing
Short-Field Approach and Landing
Soft-Field Approach and Landing

Power-Off Accuracy Approaches
    90° Power-Off Approach
    180° Power-Off Approach
    360° Power-Off Approach

Emergency Approaches and Landings (Simulated)

Faulty Approaches and Landings
    Low Final Approach
    High Final Approach
    Slow Final Approach
    Use of Power
    High Roundout
    Late or Rapid Roundout
    Floating During Roundout
    Ballooning During Roundout
    Bouncing During Touchdown
    Hard Landing
    Touchdown in a Drift or Crab
    Ground Loop
    Wing Rising After Touchdown

    Dynamic Hydroplaning
    Reverted Rubber Hydroplaning
    Viscous Hydroplaning


A stabilized approach is one in which the pilot establishes and maintains a constant angle glidepath towards a predetermined point on the landing runway. It is based on the pilot’s judgment of certain visual clues, and depends on the maintenance of a constant final descent airspeed and configuration.

An airplane descending on final approach at a constant rate and airspeed will be traveling in a straight line toward a spot on the ground ahead. This spot will not be the spot on which the airplane will touch down, because some float will inevitably occur during the roundout (flare). [Figure 8-9] Neither will it be the spot toward which the airplane’s nose is pointed, because the airplane is flying at a fairly high angle of attack, and the component of lift exerted parallel to the Earth’s surface by the wings tends to carry the airplane forward horizontally.

Stabilized approach Figure 8-9. Stabilized approach.

horizon appears to increase (aiming point moving down away from the horizon), then the true aiming point, and subsequent touchdown point, is farther down the runway. If the distance between the perceived aiming point and the horizon decreases (aiming point moving up toward the horizon), the true aiming point is closer than perceived.

When the airplane is established on final approach, the shape of the runway image also presents clues as to what must be done to maintain a stabilized approach to a safe landing.

A runway, obviously, is normally shaped in the form of an elongated rectangle. When viewed from the air during the approach, the phenomenon known as

The point toward which the airplane is progressing is termed the “aiming point.” [Figure 8-9] It is the point on the ground at which, if the airplane maintains a constant glidepath, and was not flared for landing, it would strike the ground. To a pilot moving straight ahead toward an object, it appears to be stationary. It does not “move.” This is how the aiming point can be distinguished—it does not move. However, objects in front of and beyond the aiming point do appear to move as the distance is closed, and they appear to move in opposite directions. During instruction in landings, one of the most important skills a student pilot must acquire is how to use visual cues to accurately determine the true aiming point from any distance out on final approach. From this, the pilot will not only be able to determine if the glidepath will result in an undershoot or overshoot, but, taking into account float during roundout, the pilot will be able to predict the touchdown point to within a very few feet.

For a constant angle glidepath, the distance between the horizon and the aiming point will remain constant. If a final approach descent has been established but the distance between the perceived aiming point and the perspective causes the runway to assume the shape of a trapezoid with the far end looking narrower than the approach end, and the edge lines converging ahead. If the airplane continues down the glidepath at a constant angle (stabilized), the image the pilot sees will still be trapezoidal but of proportionately larger dimensions. In other words, during a stabilized approach the runway shape does not change. [Figure 8-10]

Runway shape during stabilized approach Figure 8-10. Runway shape during stabilized approach.

If the approach becomes shallower, however, the runway will appear to shorten and become wider. Conversely, if the approach is steepened, the runway will appear to become longer and narrower. [Figure 8-11]

Change in runway shape if approach becomes narrow or steep Figure 8-11. Change in runway shape if approach becomes narrow or steep.

The objective of a stabilized approach is to select an appropriate touchdown point on the runway, and adjust the glidepath so that the true aiming point and the desired touchdown point basically coincide. Immediately after rolling out on final approach, the pilot should adjust the pitch attitude and power so that the airplane is descending directly toward the aiming point at the appropriate airspeed. The airplane should

be in the landing configuration, and trimmed for “hands off” flight. With the approach set up in this manner, the pilot will be free to devote full attention toward outside references. The pilot should not stare at any one place, but rather scan from one point to another, such as from the aiming point to the horizon, to the trees and bushes along the runway, to an area well short of the runway, and back to the aiming point. In this way, the pilot will be more apt to perceive a deviation from the desired glidepath, and whether or not the airplane is proceeding directly toward the aiming point.

If the pilot perceives any indication that the aiming point on the runway is not where desired, an adjustment must be made to the glidepath. This in turn will move the aiming point. For instance, if the pilot perceives that the aiming point is short of the desired touchdown point and will result in an undershoot, an increase in pitch attitude and engine power is warranted. A constant airspeed must be maintained. The pitch and power change, therefore, must be made smoothly and simultaneously. This will result in a shallowing of the glidepath with the resultant aiming point moving towards the desired touchdown point. Conversely, if the pilot perceives that the aiming point is farther down the runway than the desired touchdown point and will result in an overshoot, the glidepath should be steepened by a simultaneous decrease in pitch attitude and power. Once again, the airspeed must be held constant. It is essential that deviations from the desired glidepath be detected early, so that only slight and infrequent adjustments to glidepath are required.

The closer the airplane gets to the runway, the larger (and possibly more frequent) the required corrections become, resulting in an unstabilized approach.

Common errors in the performance of normal approaches and landings are:

  • Inadequate wind drift correction on the base leg.
  • Overshooting or undershooting the turn onto final approach resulting in too steep or too shallow a turn onto final approach.
  • Flat or skidding turns from base leg to final pproach as a result of overshooting/inadequate wind drift correction.
  • Poor coordination during turn from base to final approach.
  • Failure to complete the landing checklist in a timely manner.
  • Unstabilized approach.
  • Failure to adequately compensate for flap extension.
  • Poor trim technique on final approach.
  • Attempting to maintain altitude or reach the runway using elevator alone.
  • Focusing too close to the airplane resulting in a too high roundout.
  • Focusing too far from the airplane resulting in a too low roundout.
  • Touching down prior to attaining proper landing attitude.
  • Failure to hold sufficient back-elevator pressure after touchdown.
  • Excessive braking after touchdown.

Previous | Next

Copyright 2012
PED Publication