Chapter 4—Slow Flight, Stalls, and Spins |
||
---|---|---|
Table of Contents Introduction Slow Flight Flight at Less than Cruise Airspeeds Flight at Minimum Controllable Airspeed Stalls Recognition of Stalls Fundamentals of Stall Recovery Use of Ailerons/Rudder in Stall Recovery Stall Characteristics Approaches to Stalls (Imminent Stalls)—Power-On or Power-Off Full Stalls Power-Off Full Stalls Power-On Secondary Stall Accelerated Stalls Cross-Control Stall Elevator Trim Stall Spins Spin Procedures Entry Phase Incipient Phase Developed Phase Recovery Phase Intentional Spins Weight and Balance Requirements |
FULL STALLS POWER-ON Power-on stall recoveries are practiced from straight climbs, and climbing turns with 15 to 20° banks, to simulate an accidental stall occurring during takeoffs and climbs. Airplanes equipped with flaps and/or retractable landing gear should normally be in the takeoff configuration; however, power-on stalls should also be practiced with the airplane in a clean configuration (flaps and/or gear retracted) as in departure and normal climbs. After establishing the takeoff or climb configuration, the airplane should be slowed to the normal lift-off speed while clearing the area for other air traffic. When the desired speed is attained, the power should be set at takeoff power for the takeoff stall or the recommended climb power for the departure stall while establishing a climb attitude. The purpose of reducing the airspeed to lift-off airspeed before the throttle is advanced to the recommended setting is to avoid an excessively steep nose-up attitude for a long period before the airplane stalls. After the climb attitude is established, the nose is then brought smoothly upward to an attitude obviously impossible for the airplane to maintain and is held at that attitude until the full stall occurs. In most airplanes, after attaining the stalling attitude, the elevator control must be moved progressively further back as the airspeed decreases until, at the full stall, it will have reached its limit and cannot be moved back any farther. Recovery from the stall should be accomplished by immediately reducing the angle of attack by positively Figure 4-6. Power-on stall.releasing back-elevator pressure and, in the case of a departure stall, smoothly advancing the throttle to maximum allowable power. In this case, since the throttle is already at the climb power setting, the addition of power will be relatively slight. [Figure 4-6] The nose should be lowered as necessary to regain flying speed with the minimum loss of altitude and then raised to climb attitude. Then, the airplane should be returned to the normal straight-and-level flight attitude, and when in normal level flight, the throttle should be returned to cruise power setting. The pilot must recognize instantly when the stall has occurred and take prompt action to prevent a prolonged stalled condition. |
|
PED Publication |